a2 United States Patent

Guo et al.

US009047187B2

US 9,047,187 B2
Jun. 2, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

DEFECT MANAGEMENT IN MEMORY
SYSTEMS

Xin Guo, San Jose, CA (US); Yogesh B.
Wakchaure, Folsom, CA (US); Kiran
Pangal, Fremont, CA (US); Hiroyuki
Sanda, Palo Alto, CA (US)

Inventors:

Assignee: Intel Corporation, Santa Clara, CA

(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 244 days.

Appl. No.: 13/536,861

Filed: Jun. 28, 2012

Prior Publication Data

US 2014/0006847 A1l Jan. 2, 2014

Int. CI.
GOGF 11/00
GOGF 11/07
GOGF 11/10

U.S. CL
CPC GOG6F 11/073 (2013.01); GO6F 110727
(2013.01); GOGF 11/1016 (2013.01); GO6F
1171068 (2013.01); GO6F 11/0793 (2013.01)

Field of Classification Search

CPC ... GO6F 11/07; GO6F 11/073; GO6F 11/0727,
GO6F 11/0754; GO6F 11/076; GO6F 11/1016;
GO6F 11/1068; GO6F 11/1084; GO6F 11/167,
GO6F 11/181

(2006.01)
(2006.01)
(2006.01)

DETECT
FAILURE

200
R

EXTRINSIC
FAILURE

THINE

USPC 714/6.1, 6.11, 6.13, 6.2, 6.21, 6.3, 6.31,
714/6.32, 42, 47.1, 47.2, 47.3, 53

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,345,367 B1* 2/2002 Sinclair ... 714/6.32
7,490,260 B2* 2/2009 Venkatraman etal. 714/6.32
7,774,643 B2* 82010 Wangcccooevevnnne. 714/6.13
2004/0088477 Al* 5/2004 Bullen et al. .. 711/109
2008/0307270 A1* 12/2008 Li .occoovvviviinviiiiiiinns 714/47
2010/0157641 Al* 6/2010 Shalvietal. ... 365/45
2011/0302445 Al* 12/2011 Byometal. ... 714/6.1

* cited by examiner

Primary Examiner — Joseph D Manoskey
(74) Attorney, Agent, or Firm — Chapin IP Law, LLC

(57) ABSTRACT

Defect management logic extends a useful life of a memory
system. For example, as discussed herein, failure detection
logic detects occurrence of a failure in a memory system.
Defect management logic determines a type of the failure
such as whether the failure is an infant mortality type failure
or a late-life type of failure. Depending on the type of failure,
the defect management logic performs different operations to
extend the useful life of the memory system. For example, for
early life failures, the defect management logic can retire a
portion ofthe block including the failure. For late life failures,
due to excessive reads/writes, the defect management logic
can convert the failing block from operating in a first bit-per-
cell storage density mode to operating in a second bit-per-cell
storage density mode.

34 Claims, 10 Drawing Sheets

2o

INTRINSIC
FAILURE

CHANGE MODE |.~270

SPLIT BAND
RETIRE PORTION

/260

US 9,047,187 B2

Sheet 1 of 10

Jun. 2, 2015

U.S. Patent

I Ol

OFF
S30IA3d
AHOW3N

0/t
J1907 LON
103430

091
J19071
1O
‘OIANOD

[
21901
NOILO313d
JdNIIv4

ort

08t
"OdNI
SONILLES

"4377041NOD

SS300V

9

00t
NI LSAS
AJONW3IN

US 9,047,187 B2

Sheet 2 of 10

Jun. 2, 2015

U.S. Patent

¢ ©ld

09z~

NOI1HOd 341134
aNve 111dS

JA0ON IONVHO

N

JdN1Iv4
OISNIHLNI

JdN1Iv4
103130

JdNIIv4
OISNIHLX3

ﬂ 00¢

US 9,047,187 B2

Sheet 3 of 10

Jun. 2, 2015

U.S. Patent

€ Old
] [-]
(-] (-]
-] [-]
€902l EV-0cl €012
M0014 MD019 anvg
X-G¥2
2g-0al AR 3ovd z-012
eeoe »0079 »0079 anvg
o B
g90er V02l ~—— 34NV -0l
M0014 M0014 anvg
gorT VoIt
30IA3a 301A3Q
AHOWIN AHOWIN J
001
INI1SAS
AHOWIN

US 9,047,187 B2

Sheet 4 of 10

Jun. 2, 2015

U.S. Patent

v "Old

£g-0¢ct
X009

¢<¢d-0cl

l-¢a-0cl

ev-0cl
M0014

AR \

ev-021 '

cv-0¢1 ¥00149 40
NOI1HOd ad34i13Y

X-Sv¢e MNuo_‘N

S Bt

.. va-oLz
< aNva-ans

19-0c}
A00714

g-0k1
30IA3A
AHONWIN

Iv-0cl
X004

V-0l
30IA3d
AHOW3IN

00}
W3LSAS
AJOWIIN

US 9,047,187 B2

Sheet 5 of 10

Jun. 2, 2015

U.S. Patent

G

JE|

€d-0ct
X009
L#3A0ON

L# 3AON
cd-0ct
X009

e

td-0ct
X009
L#3Aa0Nn

g-0lLt
30IA3d
AHOW3N

ev-0ct
X004
L#3d0N

L#3Aa0Nn
cv-0cl
X004

Iv-0ct
X004
L# 3A0ON

V-0F1
30IA3d
AHOW3IN

00t
NI LSAS
AHOW3N

US 9,047,187 B2

Sheet 6 of 10

Jun. 2, 2015

U.S. Patent

2d-0¢1X00714d 40 ONINOILILHVd

TvOISAHd ON ‘SANVE-9NsS

a3Lv3HO ATM3IN 3HL
40 INO NI 3SN HO4

9 Old

J3INDISSY ANV Z# IAOW
OL 3LHIANOD MO0Tg

-] (]

-] -]

-] (-]
L#3a0N L# 3AOW
£0-021 €g0er
M007g 10078
AT _
L# 3A0ON ¢d-0ct

.......... it R R 9 2 3000
L# JAON Y ad
5021 Taoer
M007g 40078
F# NQOE .. F# NQOE
D-0FF g-0FF
321A3Q 32I1A3Q
AHOWI AHOWI

H# 3A0ON
ev-0ct
M0014

a-av-0al
1#3dON

l-cv-0¢l
H# 3A0ON

Iv-0cl
M00714
300N

v-0ll
30IA3d
AHOW3IN

€042
anve
..................... -
anNve-ens
ve-012
aNvE-ans
1012
anve

001
W3LSAS
AHOW3IW

US 9,047,187 B2

Sheet 7 of 10

Jun. 2, 2015

U.S. Patent

L Ol

JOV4HILNI 'NINOD

718
$53904d NOILYDITddY
HITIOH.LNOD
HITTOH.LNOD
§S300V $S300V
cort -ovT
HOSSIDOHd WSHD
(%] 218
B ~o
NILSAS
J0VAHILNI O/l HILNdNOD
718 057
OFF
S30IA3A
AHOWIW

US 9,047,187 B2

Sheet 8 of 10

Jun. 2, 2015

U.S. Patent

8 ©Id

0€8 ~\.

SANva-ans
JTdILTNN IHL OLNI ANVd IHL 40 ONILLITAS FHL ONILYOIANI NOILYWHOLNI SONILLIS dd003Y

%

028

SANVE-aNns 31dILT1NN OLNI Y0019 IHL ONIANTONI ANVE Vv LI1dS

ﬁ

018~

V1va 34OLS OL SINIWITI AHOWIIN I1dILTNIN
40 dNOYD V DNIANTIONI ¥O01d IHL "FOIAIA AHOWIIN HSY 14 IHL NI SMOO0TE I1dILTNIN 40 INO DNIFF
Y0078 IHL 'FOIAIA AHOWIIN HSY T4 V 40 MO0T19 ¥ NI 3HNTIVH SSTOOV NV 40 NOILYOIHILON IAIFO3Y

(008

US 9,047,187 B2

Sheet 9 of 10

Jun. 2, 2015

U.S. Patent

6 "Old

0€6 ~\.

MO018 A34NODIANODIY FHL 40 NOILHOd ¥ 1SV31 LV OL SS3OOV LNINOISANS DNITaVYNS
NOILYIWHOLNI SONILLIS FHL MOOT8 d3HdNDIINODIH FHL 40 NOILYINHOLANI SONILLIS IHOLS

%

026

JHNIV4 SS300V IHL AdINWIY OL MO019 FHL 3HNODIINOD3Y
‘NOILVOI4ILON IHL OL IAISNOJSIH “‘ANV FHNTIV4 SSTOOV IHL 40 NOILYOIHILON FHL FAIFOIY

*

016~

I0IA3A AHOWIIN HSVY 14 IHL NI SMO0T8 31dILTNIN 40 INO DNIFF M0018 FHL '3OIAIA
AHOWIW HSVY14d ¥ 40 MD018 ¥ NI 3dNTIV4 SS3OOVY NV 40 NOILD313d NOdN NOILYDI4ILON ¥V 30NA0dd

(006

US 9,047,187 B2

Sheet 10 of 10

Jun. 2, 2015

U.S. Patent

0L "BId

01

DID07 " LONW

LLO
103430 M
H3LNdINOD
091 03T
orT 01907 ‘04N
s3oinga =P .o%ﬁo SONILL13S
AHOW3W
< > oTot
05t HOSSIO0Hd
21901
NOILO3L3a
NIV
vl
Y3 TIOHLNOD 50T
SS300V WILSAS
HILNAINOD
00+
WN3LSAS
AHOW3W

US 9,047,187 B2

1
DEFECT MANAGEMENT IN MEMORY
SYSTEMS

TECHNICAL FIELD

Embodiments of the present disclosure relate generally to
memory management.

BACKGROUND

Computer systems have long used memory devices to store
data. One reason for the widespread use of non-volatile
memory in lieu of disk drives is speed. For example, access to
data in non-volatile memory is typically much quicker than
access to data stored in a disk (e.g., a physically rotating
storage medium). A downside of using non-volatile memory
as opposed to disk drive storage is cost. For example, the cost
per bit to store data in memory can be considerably higher
than the cost per bit to store data in a disk drive.

Computer systems typically include some sort of memory
management function to keep track of and provide access to
the data stored at different locations in the non-volatile
memory system. Such a memory management task can be
rather complex, especially since the size and need for larger
memory systems has escalated over the years.

Memory systems typically include many storage elements
to store bits of information. Any of the many storage elements
can fail over the useful life of the memory system. Proper
management of the failing elements in the memory system is
important for longevity and usefulness.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example diagram illustrating a non-volatile
memory system according to embodiments herein.

FIG. 2 is an example diagram illustrating a method of
managing one or more defects according to embodiments
herein.

FIG. 3 is an example diagram illustrating a memory system
according to embodiments herein.

FIG. 41is an example diagram illustrating splitting ofa band
and retiring of a portion of the split block according to
embodiments herein.

FIG. 5 is an example diagram illustrating a memory system
and detection of a failure according to embodiments herein.

FIG. 6 is an example diagram illustrating partitioning of a
band and setting of modes according to embodiments herein.

FIG. 7 is an example diagram illustrating an architecture
that can be used to execute one or more methods according to
embodiments herein.

FIGS. 8 and 9 are example flowcharts illustrating methods
according to embodiments herein.

FIG. 10 is an example diagram illustrating use ofa memory
system in a SSD (Solid State Drive) according to embodi-
ments herein.

DESCRIPTION OF THE EMBODIMENTS

Memory systems such as those including one or more
non-volatile memory devices are prone to failure for a num-
ber of reasons.

For example, memory devices are prone to failures that
occur as a result of fabrication defects. Fabrication defects
(e.g., extrinsic-type failures) can be caused by exposure of a
dieto particles, scratches on the die, etc. Typically, these types
of failures occur early in a life of the memory device.

10

15

20

25

30

35

40

45

50

55

60

65

2

Memory systems are also prone to late life type of failures
(e.g., intrinsic-type failures). For example, memory systems
are typically designed to handle repeated (e.g., many thou-
sands of) read/writes before occurrence of a failure. However,
a high number of repeated accesses to the same memory cell
can wear out an oxide layer of a floating gate in a cell,
resulting in the inability to store data in the cell. Thus, even-
tually, an excessive number of accesses will cause a respec-
tive cell to fail.

One function of a memory management function can be to
identify one or more bad storage cells in the memory system
that cannot be used to properly store data. In such an instance,
as in conventional applications, a memory management func-
tion retires (i.e., discontinues use of) a whole block in which
the failure resides. A whole block of multiple storage cells is
typically retired when respective error correction codes
(ECCs) associated with the block are incapable of correcting
bad cells in the block. However, retiring large blocks of data
can be undesirable because the retired block may include
many memory cells that still function properly.

Conventional SSD (Solid State Drive) technology is a data
storage device that uses integrated circuit assemblies as
memory to persistently store data. SSD technology is typi-
cally compatible with traditional block input/output (I/O)
hard disk drives, but does not employ any moving mechanical
components, which distinguishes them from traditional mag-
netic disks such as spinning optical disk drives. In accordance
with, conventional SSD (Solid State Drive) type architec-
tures, if a block fails for any of multiple flash operations
(program, erase, or read) due to an intrinsic-type failure, then
that whole block in which the failure occurred is retired and
thus removed from an available memory pool. But if the
failure is due to an extrinsic-type failure, usually part of the
NAND block may be functioning properly. One type of
extrinsic-type failure is a WL-WL (Word-Line-Word-Line)
defect issue, where two adjacent WLs (WordLines) in a block
are non-functional but the rest of the block still functions
normally. Retiring the whole block in this instance reduces
the effective usage of the NAND memory available.

If the failure is of an intrinsic type, according to further
conventional techniques, the block may be unreliable in cur-
rent mode of operation (multi-level cell mode or 3 bit-per-cell
storage density mode), but may continue to operate reliably in
a lower density mode (such as a single level cell mode or 1.5
bit-per-cell storage density mode). Retiring the whole block
in this case is undesirable because the failing block may still
operate in a lower bit-per-cell storage density mode.

Embodiments herein are directed to extending a useful life
of a memory system via novel defect management tech-
niques. For example, as discussed below in more detail, an
access controller can be configured to detect occurrence of a
failure in a memory system. The failure may occur in a single
storage cell (including multiple levels) that stores multiple
bits of data.

In one non-limiting example embodiment, the access con-
troller as discussed herein determines a type of the failure
such as whether a respective failure is an infant mortality type
failure or a late-life type of failure. Infant mortality refers to
failures that occur early in the life of a product; late-life
failures refer to failures that occur due to old age or excessive
usage. Depending on the type of failure, the defect manage-
ment logic performs different operations to extend the useful
life of the memory system.

For example, for early life failures, the defect management
logic can retire a portion of the block including the failure
such as one or more bad cells. For late life failures, the defect
management logic can convert the failing block from operat-

US 9,047,187 B2

3

ing in a first bit-per-cell storage density mode to a second
bit-per-cell storage density mode, the second bit-per-cell stor-
age density mode being lower than the first bit-per-cell stor-
age density mode. In other words, in this latter case of chang-
ing the cell storage density mode of a block, the defect
management logic configures a block to switchover from
operating in a first mode in which each storage cell in a block
stores N bits per cell to a second mode in which the each cell
stores fewer than N bits per storage cell.

Both of these solutions alleviate the need to retire a whole
block of cells in which the failure occurs.

Now, more specifically, FIG. 1 is an example diagram
illustrating an implementation of a memory system, for
example an SSD, according to embodiments herein.

As shown, example memory system 100 includes an access
controller 140 and one or more memory devices 110. Access
controller 140 includes failure detection logic 150, configu-
ration management logic 160, and defect management logic
170. Access controller 140 also includes settings information
180.

The memory system 100 can include hardware, software,
firmware, etc., to perform the functions (e.g., failure detection
logic 150, configuration management logic 160, defect man-
agement logic 170, storage of settings information 180, etc.)
as discussed herein.

More specifically, each of the resources disclosed in FIG. 1
can be any suitable type of resource. For example, the
memory devices 110 can be non-volatile type memory
devices (e.g., NAND flash, NOR flash, Magnetoresistive
Random Access Memory, Ferroelectric Random Access
Memory, personal computer memory system, etc.) or any
type of non-volatile memory that stores data. The access
controller 140 and its components can be executed via any
suitable type of resource such as a as an ASIC (Application
Specific Integrated Circuit), processor executing instructions,
firmware, hardware, software, etc.

As discussed herein, in general, the failure detection logic
150 detects occurrence of a memory access failure in the one
or more memory devices 110. The defect management logic
170 processes the memory access failure and determines how
to reconfigure the memory devices 110 in light of the detected
access failure. The configuration management logic 160
updates settings information 180 to reflect a present configu-
ration for storing data in the memory devices 110.

The access controller 140 uses the settings information 180
to determine parameters such as a partitioning of the memory
devices 110, operational mode setting of the memory devices
110, etc. Accordingly, the settings information 180 enable the
access controller 140 to access to the memory devices 110
depending on a current configuration.

As discussed in more detail below, the defect management
logic initiates reconfiguration of the memory devices 110 in
different ways depending on detection of different memory
element failures. Certain types of the memory failures can be
corrected via error correction techniques. For example, por-
tions of storage in the memory devices 110 or auxiliary
devices can be allocated to correct defective memory ele-
ments via storage of an error correction code for a portion of
stored data. However, eventually, the error correction code
can no longer be used when the number of errors for the
portion exceeds a threshold value. In such an instance, to
remedy the error, and allow continued use of the memory
system including the memory devices 110, the defect man-
agement logic 170 reconfigures portions of the memory
devices 110 depending on the type of failure as discussed
below.

10

15

20

25

30

40

45

55

4

FIG. 2 is an example diagram illustrating a method of
managing memory defects according to embodiments herein.

By way of a non-limiting example, the memory devices
110 can be non-volatile memory devices having limited
erase/program capability. NAND fail modes include intrin-
sic-type failures and extrinsic-type failures. As mentioned,
intrinsic-type failures typically occur due to the wear out of an
oxide surrounding the FG (Floating Gate) of a respective
memory element, whereas extrinsic-type failures occur
mainly due to fabrication defects caused by exposure of a
respective memory die to particles, scratches on a memory
die, etc.

As discussed above, conventional block retirement tech-
niques retire a complete block (e.g., a predefined number of
storage cells) in response to detecting a memory access fail-
ure. In other words, according to conventional techniques, an
entire block is retired for use due to a failure even though only
a portion of the block may be defective.

This disclosure includes a discovery that a portion of a
failing block can still be used based on appropriately recon-
figuring the memory devices 110 in view of the detected one
or more failures. In accordance with embodiments herein, a
certain amount of overhead resources such as settings infor-
mation 180 are needed to keep track of the different recon-
figurations of the memory system as it changes over time
depending on the detected failures. However, the defect man-
agement techniques as discussed herein enable a continued,
more efficient use of memory resources.

Embodiments herein can include implementing so-called
partial block mapping. Via partial block mapping as discussed
herein, a band (e.g., as discussed below in example FIGS. 3
and 5, a stripe across multiple memory devices initially
including a block from each of the memory devices) can be
mapped at a sub-block level as opposed to at the block level.
This can be done dynamically whenever there is a defect or
failure on a given band—a band may include one or more
blocks from each of multiple different devices. Defect man-
agement can further include modifying parameters such as
partitioning of bands, partitioning of blocks, adjusting a size
and/or number of bands, changing operational modes of
blocks, etc., to accommodate the detected one or more access
failures.

More specifically, in processing block 210 of flowchart
200, the failure detection logic 150 receives notification of a
failure in one or more of memory devices 110. The failure can
be of any suitable type such as a write failure, read failure, etc.

In one embodiment, the access controller attempts to
execute a command such as a read or write with respect to a
specific location in a memory device. The failure detection
logic 150 can receive a pass/fail indication with respect to the
execution of the command. For example, the command can be
a write command. The failure detection logic 150 receives a
failure notification when the write command to a particular
location fails. The command may be a read command. The
read command may fail due to corruption of stored data.

A failure can be detected during a write command based on
verifying that data written to the storage cell matches the data
written in a recent write cycle. A failure can be detected
during a read command. For example, every time data is
written to the non-volatile memory, data can be passed
through failure detection logic 150 that creates a unique sig-
nature for the stored data. The unique signature and data can
be stored in the non-volatile memory. When reading back,
both data and stored unique signature are read by the failure
detection logic 150. The failure detection logic 150 creates a
new signature for the read data. The newly created signature
is then compared to the stored signature. If there is a differ-

US 9,047,187 B2

5

ence between the newly created signature and the stored
signature, then a data storage failure has occurred. If not,
there is no failure. The failure detection logic 150 can report
the failure as a pass fail bit.

Assume in this example that the failure detection logic 150
detects occurrence of an access failure. The access failure can
be caused by a failed read command, failed write commands,
etc., with respect to a particular block in the memory devices
150.

The decision whether the failure is an extrinsic-type access
failure or an intrinsic-type failure can be based on fail param-
eters such as cycle count for the block (such as the number of
previous accesses to the block), fail type, fail signature, sever-
ity of the fail mode, etc.

In one embodiment, the failure detection logic 150 has
access to status information that keeps track of the fail param-
eters for the access failure. As mentioned, the fail parameters
can include a cycle count value indicating a number of times
each of the portions such as blocks of the memory devices 110
have been accessed.

As an example, the access controller 140 can include a
counter for each block in the memory system 100; the counter
keeps track of a number of previous accesses to the block. Via
the counter information, and/or other fail parameters, the
failure detection logic 150 determines the type of access
failure (e.g., intrinsic-type failure, extrinsic-type failure,
etc.).

In processing block 220, the failure detection logic 150
determines a type of the access failure. For example, assume
in this example that the failure detection logic 150 accesses
status information (e.g., counter information) indicating the
number of access to the block in which the failure occurred.
The failure detection logic 150 compares the count informa-
tion for the failing block to a threshold value.

If the count information for the failing block is less than a
threshold value (i.e., the block has been accessed relatively
few times), the failure detection logic 150 categorizes the
current access failure as an extrinsic-type failure due to infant
mortality.

On the other hand, if the count information for the failing
block s greater than a threshold value (i.e., the block has been
accessed relatively few times), the failure detection logic 150
categorizes the current access failure as an intrinsic-type fail-
ure due occurring near an end of life of the block.

Note that the threshold value can be any suitable value that
varies depending on the embodiment and the type associated
with memory devices 110.

Assume in this example that the failure detection logic 150
classifies the detected access failure as an extrinsic-type of
access failure. In such an instance, in processing block 230,
the failure detection logic 150 verifies operation of all word
lines in the block in which the access failure was detected. If
the entire block fails a validation test or check test (e.g., no
word-line in the block under test can be used to properly store
data), the failure detection logic 150 notifies the defect man-
agement logic 170 to retire the entire block in processing
block 250. On the other hand, if in processing block 230, the
failure detection logic 150 determines that not all word lines
are failing, the failure detection logic 150 executes processing
block 240. In processing block 240, the failure detection logic
150 determines which, if any, portions of a respective block
are able to properly store data. If no portions of the block are
functional, the failure detection logic notifies the defect man-
agement logic 170 to retire the block. Alternatively, if in
processing block 240, the failure detection logic 150 deter-
mines that one or more portions of the block are still usable

10

15

20

25

30

35

40

45

50

55

60

65

6

despite at least a portion failing due to the failure, the failure
detection logic 150 provides such notification to the defect
management logic 170.

Thus, the defect management logic 170 can verify an abil-
ity to store data in the block at locations other than where the
access failure occurred. As further discussed, the defect man-
agement logic 170 may initiate retiring only a portion of the
failed block in response to detecting that accesses to at least a
portion of the block functions properly to store data.

In processing block 280, after receiving notification from
the failure detection logic 150 that at least portions of the
failed block are still usable despite the access failure, the
defect management logic 170 initiates splitting of a band (and
also splitting of the block) and retires a portion of the block in
which the access failure occurred. This is shown and dis-
cussed in more detail with respect to FIGS. 3 and 4 below.

FIG. 3 is an example diagram illustrating a configuration of
memory devices according to embodiments herein.

As shown, the more specifically 100 includes memory
device 110-A, memory device 110-B, etc. The memory sys-
tem 100 can include a string of any suitable number of
memory devices 100.

Each of the memory devices 110 includes multiple blocks
of memory cells or memory elements to store respective bits
of data.

In one embodiment, the memory elements in each block
are multi-level cells, each of which is capable of storing
multiple bits of data. The blocks can be partitioned to include
multiple pages. Each page includes multiple cells to store
multiple bits of data. As mentioned, each cell can store mul-
tiple bits of data depending on a bit-per-cell storage density
mode setting.

The storage resources in the memory devices 110 can be
striped as shown with bands 210 (e.g., band 210-1, band
210-2, band 210-3, etc.). Each of the bands 210 includes
multiple blocks. Each band can include a block from each
memory device 110.

Each of the bands can define a contiguous range of pages
forming a block. For example, the band can span a physical
range of addresses common to each of the memory device.
Each of the memory devices can be driven with a respective
chip enable signal (e.g., based on upper address lines) to
indicate a current one or more block in the band that is being
accessed.

As shown in this example embodiment, the band 210-1
includes: block 120-A1 of memory device 110-A, block 120-
B1 of memory device 110-B, and so on. The band 210-2
includes: block 120-A2 of memory device 110-A, block 120-
B2 of memory device 110-B, and so on. The band 210-3
includes: block 120-A3 of memory device 110-A, block 120-
B3 of memory device 110-B, and so on.

Each band can be of the same size or of different size. As
discussed herein, the number of bands can be modified to
account for defective memory elements. Settings information
180 keeps track of the ranges of the bands 210.

Assume in this example that the access controller 140
attempts to access page 245-X in block 120-A2. In a manner
as previously discussed, the failure detection logic 150
detects a location of the access failure and determines
whether the access failure is an intrinsic-type of failure or an
extrinsic-type of failure. Assume in this example that the
failure detection logic 150 determines that the access failure
is an extrinsic-type of access failure and that one or more
portions of the memory in block 120-A2 (other than where the
access failure occurred) is recoverable.

Inone embodiment, to remedy the access failure, the defect
management logic 170 splits the band 210-2.

US 9,047,187 B2

7

The defect management logic 170 can split the band into
any suitable number of sub-bands. If the block 120-A1l
includes 128 pages, the defect management logic can split the
band up into as many as 128 sub-bands. In other words, the
band can be split to the page level, word-line level, etc.

Splitting the band up into more sub-bands requires more
overhead resources to keep track of the splits. Thus, there are
tradeoffs to consider when determining how many ways a
band should be split.

FIG. 4 is an example diagram illustrating reconfiguration
of'a memory system according to embodiments herein.

As shown, by way of a non-limiting example, assume in
this example that the defect management logic 170 splits the
band 210-2 into sub-band 210-2A and sub-band 210-2B.
Splitting the band 210 causes each of the blocks 120-Al,
block 120-A2, etc., to be split as shown into sub-blocks. For
example, block 120-A1 is split into sub-block 120-A1-1 and
sub-block 120-A1-2; block 120-A1 is split into sub-block
120-A1-1 and sub-block 120-A1-2; and so on.

By way of a non-limiting example, splitting of the band
include physical partitioning of the band 210 based on physi-
cal addresses. That is, certain cells of the split block will
reside in one sub-band while other portions of the block will
reside in another sub-band after the band partitioning.

The defect management logic 170 can receive notification
from the failure detection logic 150 where the access failure
occurred in the block 120-A2. Based on where the access
failure occurs, the defect management logic 170 chooses
which of the one or more sub-blocks to retire from further use.

In this example, the defect management logic 170 receives
an indication or determines that the access failure occurred in
sub-block 120-A2-1. Accordingly, the defect management
logic 170 retires sub-block 120-A2-1 such that the access
controller 140 no longer attempts to or has access to this
sub-block. The sub-block 120-A2-2 is still usable. In other
words, the defect management logic 170 retires the sub-block
120-A2-1 from further use and configures the sub-block 120-
A2-2 for continued use to store data.

In one embodiment, the defect management logic 170 noti-
fies the configuration management logic 160 to retire sub-
band 120-A2-1 from further use. The configuration manage-
ment logic 160 also receives notification of the splitting of the
band 210-1 into multiple sub-bands 210-2A and 210-2B.

In response to the notifications, the configuration manage-
ment logic 160 updates settings information 180 to indicate
that the sub-block 120-A2-1 has been retired and the new
partitioning of band 210-2. As mentioned, the settings infor-
mation 180 keeps track of the different sized bands, different
sized blocks, sub-blocks, etc., associated with memory
devices 110.

Thus, settings information 180 indicates a current configu-
ration of the storage devices 110. Via the settings information
180, the access controller 140 is able to identify which por-
tions of the memory devices 110 are available for access.

Thus, when a block fails, the corresponding band can be
split into multiple sub-bands. The sub-bands can be of any
size, but smaller sized sub-band typically ensures better
memory utilization.

Any suitable type of memory device architecture can be
used to carry out embodiments herein. When the memory
devices 110 are 3 dimensional type NAND flash memory
devices, the respective memory array can be tiled (e.g., each
block can be broken up into smaller groupings of memory
storage cells). A logical block as discussed herein can include
multiple tiles. Each tile in the NAND flash memory device
can be erased independently. Thus, a failing block can be
remapped to tile granularity and instead of block retirement.

10

15

20

25

30

40

45

50

55

60

65

8

Since each tile can be erased independently, data migration
and garbage collection methods typically will not require any
significant changes. Thus, partial block mapping as discussed
herein can be used in any suitable type of resource including
3-dimensional type NAND memory devices.

Referring again to FIG. 2, assume in processing block 220
that the failure detection logic 150 determines that the access
failure is an intrinsic-type access failure, instead of an extrin-
sic-type of failure as discussed above.

In one embodiment this includes detecting that the number
of recorded previous accesses to the failed block is greater
than a threshold value. In this instance, the failure detection
logic 150 classifies the access failure as an intrinsic-type of
access failure, which occurs near an end of life of the block.
In other words, the failure in this instance is most likely
caused by an excessive number of previous accesses to the
block and/or storage cell.

The failure detection logic 150 notifies the defect manage-
ment logic 170 that the detected access failure was caused by
excessive use and is likely an end-of-life type failure.

In processing block 270, in response to receiving the noti-
fication that the current access failure is an intrinsic-type of
access failure, the defect management logic 170 marks the
failing block for conversion from a first bit-per-cell storage
density mode to a second bit-per-cell storage density mode.

By way of a non-limiting example, the conversion of the
failed block from operating in the multi-level cell mode (such
as a first bit-per-cell storage density mode) to the single level
cell mode (such as a second bit-per-cell storage density mode)
can take place at any suitable time such as during a next erase
cycle. Further details of reconfiguring the memory devices in
view of an intrinsic-type access failure are shown in FIGS. 5
and 6 below.

FIG. 5 is an example diagram illustrating a configuration of
memory devices according to embodiments herein.

As shown, the memory system 100 includes memory
device 110-A, memory device 110-B, etc. The memory sys-
tem 100 can include a string of any suitable number of
memory devices 100 as previously discussed.

Each memory device in memory system 100 includes mul-
tiple blocks of memory cells or memory elements to store
respective bits of data. In one embodiment, the memory ele-
ments (such as cells) in each block are multi-level cells, each
of'which is capable of storing multiple bits of data. The blocks
can be partitioned to include multiple pages. Each page
includes multiple memory elements (e.g., cells) to store mul-
tiple bits of data.

The storage resources in the memory devices 110 can be
striped as shown with bands 210 (e.g., band 210-1, band
210-2, band 210-3, etc.). Each of the bands 210 includes
multiple blocks. Each band can include a block from each
memory device 110.

As shown in this example embodiment, the band 210-1
includes: block 120-A1 of memory device 110-A, block 120-
B1 of memory device 110-B, and so on. The band 210-2
includes: block 120-A2 of memory device 110-A, block 120-
B2 of memory device 110-B, and so on. The band 210-3
includes: block 120-A3 of memory device 110-A, block 120-
B3 of memory device 110-B, and so on.

In this example, assume that each of the blocks is set to
operate in the first bit-per-cell storage density mode. In such
a mode, each cell in the memory devices stores multiple bits
of data.

Further in this example, the access controller 140 accesses
block 120-B2, causing a failure.

US 9,047,187 B2

9

In a manner as previously discussed, the failure detection
logic 150 detects the access failure and determines whether
the access failure is an intrinsic-type of failure or an extrinsic-
type of failure.

Assume in this example that the failure detection logic 150
determines that the access failure is an intrinsic-type of access
failure. In such an instance, to remedy the access failure, the
defect management logic 170 splits the band 210 into sub-
bands 210-2A and 210-2B.

FIG. 6 is an example diagram illustrating remedial actions
to correct defects according to embodiments herein.

As shown, the defect management logic 170 can split the
band 210-2 (in which the failing block 120-B2 resides) into
any suitable number of sub-bands.

By way of a non-limiting example, assume in this example
that the defect management logic 170 splits the band 210-2
into sub-band 210-2A and sub-band 210-2B. Splitting the
band 210-2 causes each of the non-failing blocks such as
block 120-A2, sub-block 120-C2, etc., to be split as shown
into multiple sub-blocks. For example, block 120-A2 is split
into sub-block 120-A2-1 and sub-block 120-A2-2. Splitting
of good blocks can be achieved via splitting of the physical
addresses associated with the good blocks. Each new sub-
block operates in the first bit-per-cell storage density mode.

Instead of physically splitting the failing block 120-B2
(i.e., block including the detected end of life type failure) into
multiple sub-blocks along sub-band divisions, the defect
management logic 170 converts the entire block 120-B2 from
operating in the first bit-per-cell storage density mode to
operating in a second bit-per-cell storage density mode.

Converting the setting of the block 120-B2 from the first
bit-per-cell storage density mode to the second bit-per-cell
storage density mode substantially increases an operational
life of the block 120-B2. For example, the second bit-per-cell
storage density mode may tolerate up to 10 times more life-
time accesses than does the first bit-per-cell storage density
mode.

Conversion of the block 120-B2 from the multi-level cell
(e.g., MLC) mode to the single level cell (e.g., SLC) mode
substantially decreases an amount of available storage capac-
ity. For example, setting the block 120-B2 to the single level
cell mode can reduce the available storage capacity by a half.
Because the available storage capacity is reduced, the block
120-B2 is assigned for use in either sub-band 210-2A or
sub-band 210-2B.

In this example, the block 120-B2 is assigned for use in
sub-band 210-2B. Thus, sub-band 210-2B includes sub-block
120-A2-2 (first bit-per-cell storage density mode), block 120-
B2 (second bit-per-cell storage density mode), sub-block
120-C2-2 (first bit-per-cell storage density mode), and so on.
Sub-band 210-2 A includes sub-block 120-A2-1 (first bit-per-
cell storage density mode), sub-block 120-C2-2 (multi-level
cell storage density mode), and so on. The sub-band 210-2A
may not include storage from memory device 110-B.

By setting the block 120-B2 to the second bit-per-cell
storage density mode, the block 120-B2 is logically split. That
is, each cell supports storage of fewer bits. The available
storage capacity of block 120-B2 in the second bit-per-cell
storage density mode can be substantially equivalent to the
capacity for storing bit information in sub-block 120-A2-2 set
to the first bit-per-cell storage density mode. Thus, in this
non-limiting example, there is no physical splitting of block
120-B2. However, there is physical splitting of good blocks
120-A2, 120-C2, etc.

In one embodiment, the defect management logic 170 noti-
fies the configuration management logic 160 of the splitting
of the band 210-A into sub-bands 210-2A, 210-2B, etc., and

10

15

20

25

30

35

40

45

50

55

60

65

10
that the block 120-B2 has been converted to the second bit-
per-cell storage density mode.

In response to the notifications, the configuration manage-
ment logic 160 updates settings information 180 to reflect the
reconfiguration of the memory devices as discussed above.

Thus, settings information 180 indicates a current configu-
ration of the storage devices 110. Via the settings information
180, the access controller 140 is able to identify a size of the
blocks and sub-blocks, respective mode settings, etc.

Thus, in accordance with embodiments herein, a band can
include a fixed block from each of multiple memory devices.
In this method, when a multi-level cell type block fails, the
band containing that block will be flagged. When that band
completes data migration (e.g., based on wear leveling, back-
ground data refresh, etc.) the flagged band can be split into
smaller bands. The failing block 120-B2 is not split, but is
included in one of the newly created sub-bands.

FIG. 7 is an example block diagram of a computer system
for implementing any of the operations as discussed herein
according to embodiments herein.

Computer system 750 can be configured to execute any of
the operations with respect to access controller 140 and/or
corresponding resources such as failure detection logic 150,
defect management logic 170, configuration management
logic 160, etc.

As shown, computer system 750 of the present example
can include an interconnect 811 that couples computer read-
able storage media 812 such as a non-transitory type of media
(i.e., any type of hardware storage medium) in which digital
information can be stored and retrieved, a processor 813 (i.e.,
one or more processor devices), /O interface 814, and a
communications interface 817.

1/0 interface 814 provides connectivity to memory system
100.

Computer readable storage medium 812 can be any hard-
ware storage device such as memory, optical storage, hard
drive, floppy disk, etc. In one embodiment, the computer
readable storage medium 812 (e.g., a computer readable hard-
ware storage) stores instructions and/or data.

Communications interface 817 enables the computer sys-
tem 750 and processor 813 to communicate over a resource
such as network 190 to retrieve information from remote
sources and communicate with other computers. /O interface
814 enables processor 813 to retrieve stored information from
a repository such as memory devices 110.

As shown, computer readable storage media 812 is
encoded with access controller application 140-1 (e.g., soft-
ware, firmware, etc.) executed by processor 813. Access con-
troller application 140-1 can be configured to include instruc-
tions to implement any of the operations as discussed herein.

During operation of one embodiment, processor 813
accesses computer readable storage media 812 via the use of
interconnect 811 in order to launch, run, execute, interpret or
otherwise perform the instructions in access controller appli-
cation 140-1 stored on computer readable storage medium
812.

Execution of the access controller application 140-1 pro-
duces processing functionality such as access controller pro-
cess 140-2 in processor 813. In other words, the access con-
troller process 140-2 associated with processor 813
represents one or more aspects of executing access controller
application 140-1 within or upon the processor 813 in the
computer system 750.

Those skilled in the art will understand that the computer
system 750 can include other processes and/or software and
hardware components, such as an operating system that con-

US 9,047,187 B2

11

trols allocation and use of hardware resources, software
resources, etc., to execute access controller application 140-
1.

In accordance with different embodiments, note that com-
puter system 750 may be any of various types of devices,
including, but not limited to, a mobile computer, a personal
computer system, a wireless device, base station, phone
device, desktop computer, laptop, notebook, netbook com-
puter, mainframe computer system, handheld computer,
workstation, network computer, application server, storage
device, a consumer electronics device such as a camera, cam-
corder, set top box, mobile device, video game console, hand-
held video game device, a peripheral device such as a switch,
modem, router, or in general any type of computing or elec-
tronic device.

Functionality supported by the different resources will now
be discussed via flowcharts in FIGS. 8-9. Note that the pro-
cessing in the flowcharts below can be executed in any suit-
able order.

FIG. 8 is a flowchart 800 illustrating an example method
according to embodiments. Note that there will be some
overlap with respect to concepts as discussed above.

In processing block 810, the defect management logic 170
receives notification of an access failure in a block of a non-
volatile memory device, the block being one of multiple
blocks in the non-volatile memory device, the block includ-
ing a group of multiple memory elements to store data.

In processing block 820, the defect management logic 170
splits a band including the block into multiple sub-bands.

In processing block 830, the configuration management
logic 160 records settings information 180 indicating the
splitting of the band into the multiple sub-bands.

FIG. 9 is a flowchart 900 illustrating an example method
according to embodiments. Note that there will be some
overlap with respect to concepts as discussed above.

In processing block 910, the failure detection logic 150
produces a notification upon detection of an access failure in
a block of a non-volatile memory device, the block being one
of multiple blocks in the non-volatile memory device.

In processing block 920, the defect management logic 170
receives the notification of the access failure and, responsive
to the notification, reconfigures the blocks to remedy the
access failure.

In processing block 930, the configuration management
logic 160 stores settings information 180 of the reconfigured
block, the settings information 180 enable subsequent access
to at least a portion of the reconfigured block.

FIG. 10 is an example diagram illustrating use ofa memory
system as a SSD (Solid State Drive) according to embodi-
ments herein.

As shown, computer system 1000 can include a processor
1010 and memory system 100. Processor 1010 can be or
include one or more processor devices. Computer system
1000 can be any suitable type of resource such as a personal
computer, cellular phone, mobile device, camera, etc., using
memory system 100 to store data. By way of a non-limiting
example, memory system 100 can be a solid-state drive used
to store data.

As previously discussed, memory system 100 can include
an access controller 140 (e.g., including settings information
180, failure detection logic 150, configuration management
logic 160, defect management logic 170, etc.), and one or
more memory devices 110.

Processor 1010 has access to memory system 100 via inter-
face 1011. Interface 1011 can be any suitable link enabling
data transfers. For example, the interface 1011 can be a SCSI
(Small Computer System Interface), SAS (Serial Attached

10

15

20

25

30

35

40

45

50

55

60

65

12

SCSI), SATA (Serial Advanced Technology Attachment),
USB (Universal Serial Bus), Pcie (Peripheral Component
Interconnect Express) bus, etc.

Viainterface 1011, the processor 1010 of computer system
1000 is able to convey data to access manager 140. Access
controller 140, in turn, writes the data to memory devices 110.

Viainterface 1011, the processor 1010 of computer system
1000 is able to retrieve data from memory devices 100. For
example, the processor 1010 sends a request to the access
controller 140 to retrieve data. The access controller 140
retrieves the requested data from memory devices 110 and
conveys the data to processor 1010 over interface 1011.
Different Permutations of Disclosed Example Embodiments

A first example embodiment as discussed herein includes
an apparatus, the apparatus comprises: a failure detection
logic to produce a notification upon detection of an access
failure in a block of a non-volatile memory device, the block
being one of multiple blocks in the non-volatile memory
device; a defect management logic to receive the notification
of'the access failure and, responsive to the notification, recon-
figure the block to remedy the access failure; and a configu-
ration management logic to store settings information of the
reconfigured block, the settings information enabling subse-
quent access to at least a portion of the reconfigured block.

The first example embodiment can be implemented along
with any of one or more of the following features to produce
yet different embodiments:

For example, in accordance with a further embodiment, the
block can reside in a band including multiple blocks; each of
the multiple blocks in the sub-band can reside in a different
non-volatile memory device. The defect management logic,
responsive to the notification, partitions the band into mul-
tiple sub-bands.

In accordance with a further embodiment, the defect man-
agement logic can be configured to partition the block into at
least a first sub-block and a second sub-block, the access
failure occurring in the first sub-block. The defect manage-
ment logic retires the first sub-block from further use and
configures the second sub-block for continued use to store
data.

In accordance with yet further embodiment, the defect
management logic reconfigures the block into multiple sub-
blocks and retires one of the multiple sub-blocks from further
use.

In accordance with further embodiments, the defect man-
agement logic verifies an ability to store data at locations in
the block at locations other than wherein the access failure
occurred, the defect management logic retiring only a portion
of'the block in response to detecting that accesses to at least a
portion of the block function properly.

In accordance with further embodiments, the defect man-
agement logic identifies a type of the access failure based on
a counter value recording a number of accesses to the block
and reconfigures the block depending on a magnitude of the
counter value.

In yet further embodiments, the defect management logic,
responsive to detecting that a number of previous accesses to
the block is below a threshold value, partitions the block into
multiple sub-blocks and retires a portion of the block in which
the failure occurred.

In another embodiment, the defect management logic,
responsive to detecting that the number of previous accesses
to the block is above a threshold value, converts an opera-
tional mode of the block from a first bit-per-cell storage
density mode to a second bit-per-cell storage density mode.
For example, the first bit-per-cell storage density mode sup-
ports access to a first number of bits of data stored in each cell.

US 9,047,187 B2

13

The second bit-per-cell storage density mode supports access
to a second number of bits of data stored in each cell. The
second number is smaller than the first number. That is, the
second bit-per-cell storage density mode supports storage of
fewer bits-per-cell than does the first bit-per-cell storage den-
sity mode. Thus, the first bit-per-cell storage density mode
enables a respective block (or sub-block) to store more data
than does the respective block (or sub-block) in the second
bit-per-cell storage density mode.

In accordance with further embodiments, the defect man-
agement logic can be configured to convert an operational
mode of the block from one mode (e.g., a multi-level cell
mode) to another mode (e.g., a single level cell mode) and
split a band in which the block resides into multiple sub-
bands.

In an example embodiment, the defect management logic
assigns the block, which has been converted into the second
bit-per-cell mode such as a lower bit-per-cell storage density
mode, for use in one of the multiple sub-bands.

The first example embodiment can be implemented to
execute any of the method operations as discussed herein.

A second example embodiment as discussed herein
includes a method, the method comprises: detecting an access
failure in a block of a non-volatile memory device, the block
being one of multiple blocks in the non-volatile memory
device; responsive to detecting the access failure, reconfigure
the block in the non-volatile memory device to remedy the
access failure; and store settings of the reconfigured block,
the settings enabling subsequent access to at least a portion of
the reconfigured block.

The second example embodiment can be implemented
along with any of one or more of the following features to
produce yet further embodiments:

In one embodiment, the second embodiment can be con-
figured to further include: identifying a band in which the
block resides, the band including multiple blocks, each of the
multiple block in the band residing in a different non-volatile
memory device; and partitioning the band into multiple sub-
bands.

In another example embodiment, the second embodiment
can be configured to further include: reconfiguring the block
into multiple sub-blocks; identifying a sub-block where the
access failure occurred; and retiring the identified sub-block
from further use.

In another example embodiment, the second embodiment
can be configured to further include: changing an operational
mode of the block from a first bit-per-cell storage density
mode to a second bit-per-cell storage density mode; and split-
ting a band in which the block resides into multiple sub-
bands.

A third example embodiment as discussed herein includes
a method, the method comprises: receiving notification of an
access failure in a block of a non-volatile memory device, the
block being one of multiple blocks in the non-volatile
memory device, the block including a group of multiple
memory elements to store data; splitting a band including the
block into multiple sub-bands; and recording settings infor-
mation indicating the splitting of the band into the multiple
sub-bands.

The third example method embodiment can be imple-
mented along with any of one or more of the following fea-
tures to produce yet further embodiments:

For example, splitting the band can include: partitioning
the block into at least a first sub-block and a second sub-
block, the access failure occurring in the first sub-block.

10

20

35

40

45

14

The method embodiment can further include: recording
status information indicating that the first sub-block in one of
the multiple sub-bands has been retired from further access.

In one embodiment, splitting the band further includes:
partitioning multiple blocks residing in the band, each of the
multiple blocks residing in a different non-volatile memory
device.

In accordance with yet further embodiments, the method
can further include: splitting the band into at least a first
sub-band and a second sub-band, the access failure occurring
in a portion of the block in the first sub-band; and preventing
further access to the portion of the block in the first sub-band.

In accordance with another embodiment, the method can
further include: splitting the band subsequent to detecting that
at least a portion of the block properly functions to store data.

In yet another embodiment, the method can include: iden-
tifying a type of the failure based on a number of accesses to
the block; and partitioning the block into multiple sub-blocks
and retiring a portion of the block in which the failure
occurred in response to detecting that the failure is an infant
mortality failure.

In a further embodiment, the method includes: retrieving
status information indicating a number of accesses to the
block; and converting the block from a first bit-per-cell stor-
age density mode to a second bit-per-cell storage density
mode depending on the number of accesses.

In yet another example embodiment, the method can fur-
ther include: assigning the block, which has been converted
into the second bit-per-cell storage density mode, for use in
one of the multiple sub-bands.

Another method embodiment as discussed herein includes:
splitting multiple blocks residing in the band, each of the
multiple blocks residing in a different non-volatile memory
device and being set to operate in a first bit-per-cell storage
density mode; setting the block with the failure to operate in
a second bit-per-cell storage density mode; and setting the
split multiple blocks to operate in a first bit-per-cell storage
density mode.

In yet a further embodiment, the method includes: access-
ing status information indicating a number of defective
memory elements in the block; and splitting the band into
multiple sub-bands in response to detecting that the number
of defective memory elements in the block exceeds a defec-
tive memory element count threshold value.

Any of the resources as discussed herein can include one or
more computerized devices, servers, base stations, wireless
communication equipment, communication management
systems, workstations, handheld or laptop computers, or the
like to carry out and/or support any or all of the method
operations disclosed herein. In other words, one or more
computerized devices or processors can be programmed and/
or configured to operate as explained herein to carry out
different embodiments of the invention.

Yet other embodiments herein include software programs,
firmware, logic, etc. to perform operations as disclosed
herein. One such embodiment comprises a computer program
product including a non-transitory computer-readable stor-
age medium (i.e., any computer readable hardware storage
medium) on which software instructions are encoded for
subsequent execution. The instructions, when executed in a
computerized device having one or more processors, program
and/or cause the processor to perform the operations dis-
closed herein. Such arrangements can be provided as soft-
ware, firmware, code, instructions, data (e.g., data structures),
etc., arranged or encoded on a non-transitory computer read-
able storage medium such as an optical medium (e.g., CD-
ROM), floppy disk, hard disk, memory, etc., or other a

US 9,047,187 B2

15

medium such as firmware or shortcode in one or more ROM,
RAM, PROM, etc., or as logic in an Application Specific
Integrated Circuit (ASIC), etc. The software or firmware or
other such configurations can be installed onto a computer-
ized device to cause the computerized device to perform the
techniques explained herein.

Accordingly, embodiments herein are directed to an appa-
ratus, a method, a system, a computer program product, etc.,
that supports operations as discussed herein.

One embodiment includes a computer readable storage
medium and/or system having instructions, logic, etc., stored
thereon to manage defects in a memory system including one
or more non-volatile memory devices. The instructions, and/
or logic, when executed by at least one processor device of a
respective computer, cause the at least one processor device
to: detect an access failure in a block of a non-volatile
memory device, the block being one of multiple blocks in the
non-volatile memory device; responsive to detecting the
access failure, reconfigure the block in the non-volatile
memory device to remedy the access failure; and store set-
tings of the reconfigured block, the settings enabling subse-
quent access to at least a portion of the reconfigured block.

Another embodiment includes a computer readable storage
medium and/or system having instructions, logic, etc., stored
thereon to manage defects in a memory system including one
or more non-volatile memory devices. The instructions, and/
or logic, when executed by at least one processor device of a
respective computer, cause the at least one processor device
to: receive notification of an access failure in a block of a
non-volatile memory device, the block being one of multiple
blocks in the non-volatile memory device, the block includ-
ing a group of multiple memory elements to store data; split a
band including the block into multiple sub-bands; and record
settings information indicating the splitting of the band into
the multiple sub-bands.

Note that any of the processing as discussed herein can be
performed in any suitable order.

It is to be understood that the apparatus, system, method,
apparatus, instructions on computer readable storage media,
etc., as discussed herein also can be embodied strictly as a
software program, firmware, as a hybrid of software, hard-
ware and/or firmware, or as hardware alone such as within a
processor device, within an operating system or a within a
software application, etc.

Additionally, note that although each of the different fea-
tures, techniques, configurations, etc., herein may be dis-
cussed in different places of this disclosure, it is intended,
where suitable, that each of the concepts can optionally be
executed independently of each other or in combination with
each other. Any permutation of the disclosed features is pos-
sible. Accordingly, the one or more embodiments as
described herein can be embodied and viewed in many dif-
ferent ways.

Note further that techniques herein are well suited for
reconfiguring memory systems in response to detecting fail-
ures. However, it should be noted that embodiments herein
are not limited to use in such applications and that the tech-
niques discussed herein are well suited for other applications
as well.

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the present application
as defined by the appended claims. Such variations are
intended to be covered by the scope of this present applica-
tion. As such, the foregoing description of embodiments of

35

40

45

16

the present application is not intended to be limiting. Rather,
any limitations to the embodiments herein are presented in the
following claims.

The invention claimed is:

1. An apparatus comprising:

failure detection firmware to produce a notification upon

detection of an access failure in a block of a non-volatile
memory device, the block being one of multiple blocks
in the non-volatile memory device;

defect management firmware to receive the notification of

the access failure and, responsive to the notification,
reconfigure a partitioning of the block to remedy the
access failure; and

configuration management firmware to store settings infor-

mation of the reconfigured block, the settings informa-
tion enabling subsequent access to at least a portion of
the reconfigured block.

2. The apparatus as in claim 1, wherein the block resides in
aband including multiple blocks, each of the multiple blocks
in the band residing in a different non-volatile memory
device; and

wherein the defect management firmware, responsive to

the notification, partitions the band into multiple sub-
bands.

3. The apparatus as in claim 1, wherein defect management
firmware partitions the block into at least a first sub-block and
a second sub-block, the access failure occurring in the first
sub-block; and

wherein the defect management firmware retires the first

sub-block from further use and configures the second
sub-block for continued use to store data.

4. The apparatus as in claim 1, wherein the defect manage-
ment firmware reconfigures the block into multiple sub-
blocks and retires one of the multiple sub-blocks from further
use.

5. The apparatus as in claim 1, wherein the defect manage-
ment firmware verifies an ability to store data in the block at
locations other than where the access failure occurred, the
defect management firmware retiring only a portion of the
block in response to detecting that accesses to at least a
portion of the block function properly.

6. The apparatus as in claim 1, wherein the defect manage-
ment firmware identifies a type of the access failure based on
a counter value recording a number of accesses to the block
and reconfigures the block depending on a magnitude of the
counter value.

7. The apparatus as in claim 1, wherein the defect manage-
ment firmware, responsive to detecting that a number of pre-
vious accesses to the block is below a threshold value, parti-
tions the block into multiple sub-blocks and retires a portion
of the block in which the failure occurred.

8. The apparatus as in claim 1, wherein the defect manage-
ment firmware, responsive to detecting that the number of
previous accesses to the block is above a threshold value,
converts an operational mode of the block from a first bit-per-
cell storage density mode to a second bit-per-cell storage
density mode, the second bit-per-cell storage density mode
storing fewer bits per cell than the first bit-per-cell storage
density mode.

9. The apparatus as in claim 1, wherein the defect manage-
ment firmware converts an operational mode of the block
from a first bit-per-cell storage density mode to a second
bit-per-cell storage density and splits a band in which the
block resides into multiple sub-bands.

10. The apparatus as in claim 9, wherein the defect man-
agement firmware assigns the block, which has been con-

US 9,047,187 B2

17

verted to operate in the second bit-per-cell storage density
mode, for use in one of the multiple sub-bands.

11. A computer system including the apparatus in claim 1,
wherein the apparatus is an access manager, the computer
system further comprising:

at least one processor device configured to communicate

with the access manager to access the non-volatile
memory device.

12. The computer system as in claim 11, wherein the non-
volatile memory device is one of multiple non-volatile
memory devices in a solid state drive to which the computer
system has access through the access manager.

13. The computer system as in claim 1, wherein the block
resides in a band in which a stripe of blocks reside; and

wherein the defect management firmware reconfigures the

band into multiple sub-bands to partition the block.

14. The computer system as in claim 13, wherein the mul-
tiple sub-bands includes a first sub-band and a second sub-
band, the access failure occurring in the first sub-band.

15. The computer system as in claim 14, wherein the set-
tings information indicates that a portion of the block residing
in the first sub-band has been retired and that a portion of the
block residing in the second sub-band is available to store
data.

16. The apparatus as in claim 1, wherein the defect man-
agement firmware splits a band in which the block resides into
multiple sub-bands to remedy the access failure.

17. The apparatus as in claim 16, wherein the block is a first
block in a first non-volatile memory device, the apparatus
further comprising:

asecond block, the second block residing in the band along

with the first block, the second block residing in a second
non-volatile memory device.

18. A method comprising:

detecting an access failure in a block of a non-volatile

memory device, the block being one of multiple blocks
in the non-volatile memory device;

responsive to detecting the access failure, reconfigure a

partitioning of the block in the non-volatile memory
device to remedy the access failure; and

store settings of the reconfigured block, the settings

enabling subsequent access to at least a portion of the
reconfigured block.

19. The method as in claim 18 further comprising:

identifying a band in which the block resides, the band

including multiple blocks, each of the multiple block in
the band residing in a different non-volatile memory
device; and

partitioning the band into multiple sub-bands.

20. The method as in claim 18 further comprising:

reconfiguring the block into multiple sub-blocks;

identifying a sub-block of the multiple sub-blocks where
the access failure occurred; and

retiring the identified sub-block from further use.

21. The method as in claim 18 further comprising:

changing an operational mode of the block from a first

bit-per-cell storage density mode to a second bit-per-cell
storage density mode, the second bit-per-cell storage
density mode configuring a respective cell to store fewer
bits per cell than the first bit-per-cell storage density
mode; and

splitting a band in which the block resides into multiple

sub-bands.

22. A method comprising:

receiving notification of an access failure in a block of a

non-volatile memory device, the block being one of

20

25

35

40

45

50

55

18

multiple blocks in the non-volatile memory device, the
block including a group of multiple memory elements to
store data;

splitting a band including the block into multiple sub-
bands; and

recording settings information indicating the splitting of
the band into the multiple sub-bands.

23. The method as in claim 22, wherein splitting the band

further comprises:

partitioning the block into at least a first sub-block and a
second sub-block, the access failure occurring in the first
sub-block.

24. The method as in claim 23 further comprising:

recording status information indicating that the first sub-
block in one of the multiple sub-bands has been retired
from further access.

25. The method as in claim 22 wherein splitting the band

includes:

partitioning multiple blocks residing in the band, each of
the multiple blocks residing in a different non-volatile
memory device.

26. The method as in claim 22 further comprising:

splitting the band into at least a first sub-band and a second
sub-band, the access failure occurring in a portion of the
block in the first sub-band; and

preventing further access to the portion of the block in the
first sub-band.

27. The method as in claim 22 further comprising:
splitting the band subsequent to detecting that at least a
portion of the block properly functions to store data.

28. The method as in claim 22 further comprising:

identifying a type of the failure based on a number of
accesses to the block; and

partitioning the block into multiple sub-blocks and retiring
a portion of the block in which the failure occurred in
response to detecting that the failure is an infant mortal-
ity failure.

29. The method as in claim 22 further comprising:

retrieving status information indicating a number of
accesses to the block; and

converting the block from a first bit-per-cell storage den-
sity mode to a second bit-per-cell storage density mode
depending on the number of accesses.

30. The method as in claim 29 further comprising:

assigning the block, which has been converted into the
second bit-per-cell storage density mode, for use in one
of the multiple sub-bands.

31. The method as in claim 22, wherein splitting the band

includes:

splitting multiple blocks residing in the band, each of the
multiple blocks residing in a different non-volatile
memory device and being set to operate in a first bit-per-
cell storage density mode;

setting the block with the failure to operate in a second
bit-per-cell storage density mode; and

setting the split multiple blocks to operate in the first bit-
per-cell storage density mode.

32. The method as in claim 22 further comprising:

accessing status information indicating a number of defec-
tive memory elements in the block; and

splitting the band into multiple sub-bands in response to
detecting that the number of defective memory elements
in the block exceeds a defective memory element count
threshold value.

33. Computer-readable storage hardware having instruc-

tions stored thereon, the instructions, when carried out by at

US 9,047,187 B2

19

least one processing device, cause the at least one processing
device to perform operations of:
receiving notification of an access failure in a block of a
non-volatile memory device, the block being one of
multiple blocks in the non-volatile memory device, the
block including a group of multiple memory elements to
store data;
splitting a band including the block into multiple sub-
bands; and
recording settings information indicating the splitting of
the band into the multiple sub-bands.
34. The computer readable storage hardware as in claim 33,
wherein splitting the band includes:
partitioning multiple blocks residing in the band, each of

20

the multiple blocks residing in a different non-volatile 15

memory device.

